UGC NET June 2012 Syllabus for Electronic Science

UGC NET Electronic Science Syllabus 2012

Code No. 88

Subject: Electronic Science

Note:

UGC NET Electronics Paper II and III (Part A & B)

Unit-I

Electronic Transport in semiconductor, PN Junction, Diode equation and diode equivalent circuit. Breakdown in diodes, Zener diodes, Tunnel diode, Semiconductor diodes, characteristics and equivalent circuits of BJT, JFET, MOSFET, IC fabrication-crystal growth, epitaxy, oxidation, lithography, doping, etching, isolation methods, metalization, bonding, Thin film active and passive devices.

Unit-II

Superposition, Thevenin, Norton and Maximum Power Transfer Theorems, Network elements, Network graphs, Nodal and Mesh analysis, Zero and Poles, Bode Plots, Laplace, Fourier and Z-transforms. Time and frequency domain responses. Image impedance and passive filters. Two-port Network Parameters. Transfer functions, Signal representation. State variable method of circuit analysis, AC circuit analysis, Transient analysis.

Unit-III

Rectifiers, Voltage regulated ICs and regulated power supply, Biasing of Bipolar junction transistors and JFET. Single stage amplifiers, Multistage amplifiers, Feedback in amplifiers, oscillators, function generators, multivibrators, Operational Amplifiers (OP AMP) -characteristics and Applications, Computational Applications, Integrator, Differentiator, Wave shaping circuits, F to V and V to F converters. Active filters, Schmitt trigger, Phase locked loop.

Unit-IV

Logic families, flip-flops, Gates, Boolean algebra and minimization techniques, Multivibrators and clock circuits, Counters-Ring, Ripple. Synchronous, Asynchronous, Up and down shift registers, multiplexers and demultiplexers, Arithmetic circuits, Memories, A/D and D/A converters.

Unit-V

Architecture of 8085 and 8086 Microprocessors, Addressing modes, 8085 instruction set, 8085 interrupts, Programming, Memory and I/O interfacing, Interfacing 8155, 8255, 8279, 8253, 8257, 8259, 8251 with 8085 Microprocessors, Serial communication protocols, Introduction of Microcontrollers (8 bi t) -8031/8051 and 8048.

Unit-VI

Unit-VII

Maxwell's equations, Time varying fields, Wave equation and its solution, Rectangular waveguide, Propagation of wave in ionosphere, Poynting vector, Antenna parameters, Half-wave antenna, Transmission lines, Characteristic of Impedance matching, Smith chart, Microwave components-T, Magic-T, Tuner. Circulator isolator, Direction couplers, Sources-Reflex Klystron, Principle of operation of Magnetron, Solid State Microwave devices; Basic Theory of Gunn, GaAs FET, Crystal Defector and PIN diode for detection of microwaves.

Unit-VIII

Basic principles of amplitude, frequency and phase modulation, Demodulation, Intermediate frequency and principle of superheterodyne receiver, Spectral analysis and signal transmission through linear systems, Random signals and noise, Noise temperature and noise figure. Basic concepts of information theory, Digital modulation and Demodulation; PM, PCM, ASK, FSK, PSK, Time-division Multiplexing, Frequency-Division Multiplexing, Data Communications-Circuits, Codes and Modems. Basic concepts of signal processing and digital filters.

Unit-IX-A

Characteristics of solid state power devices-SCR, Triac, UJT, Triggering circuits, converters, choppers, inverters, converters. AC-regulators, speed control of a. c. And d. c. Motors.

Stepper and synchronous motors; Three phase controlled rectifier; Switch mode power supply; Uninterrupted power supply.

Unit-IX-B

Optical sources-LED, Spontaneous emission, Stimulated emission, Semiconductor Diode LASER, Photodeteetors-p-n photodiode. PIN photodiode, Phototransistors, Optocouplers, Solar cells, Display devices, Optical Fibres-Light propagation in fibre, Types of fibre, Characteristic parameters, Modes, Fibre splicing, Fibre optic communication system-coupling to and from the fibre, Modulation, Multiplexing and coding, Repeaters, Bandwidth and Rise time budgets.

Unit-X-A

Unit-X-B

Open-loop and close-loop control system. Error amplifier, on-off controller, Proportional (P), Proportional-Integral (PI), Proportional-Derivative (PD), PID controllers, Dynamic Behaviour of control systems-servomechanism characteristics parameters of control systems-Accuracy, Sensitivity, Disturbances, Transient response, Stability, Rputh-Hurwitz criterion, Bode plots, Nyquist criterion, Controlling speed. Temperature and position using analog/digital control circuits.

Also visit:
Questions? 
»»
»
»
Here