(a)
(b)
(c)
(d) none of these
Q-2. is equal to
(a)
(b)
(c)
(d) None of these
Q-3. if f(x)=log is equal to
(a) f(x)
(b) 2 f(x)
(c) 4 f(x)
(d) none of these
Q-4. if is equal
(a) 0
(b) 2
(c) 1
(d) none of these
Q-5. is equal
(a) 0
(b) 2
(c) 1
(d) none of these
Q-6. Which of the following is true?
(a) Domain of
(b) Range of
(c) Range of
(d) Range of
Q-7. Which of the following function is inverse to itself?
(a)
(b)
(c)
(d)
Q-8. The value of is equal to
(a) 5
(b) 15
(c) 13
(d) none of these
Q-9. Solution of the equation is given by
(a)
(b)
(c)
(d) none of these
Q-10. If
(a) x
(b) x-1
(c) 1-x
(d) 1+x
Q-11. If then value of
(a) 0
(b) 1
(c) 2
(d) 3
Q-12. is equal to
(a)
(b)
(c)
(d)
13. is equal to
(a) 0
(b) 1
(c)
(d) none of these
14. if
(a) is equal to 1
(b) is equal to 0
(c) is equal to -1
(d) does not exist
15. is equal to
(a)
(b)
(c)
(d)
16. if f(x) = |x-1|, then
(a)
(b)
(c)
(d)
17.
Is equal to
(a)
(b)
(c)
(d) none of these
18. The value of is
(a)
(b)
(c)
(d) 0
19. is equal to
(a)
(b)
(d) None of these
20.
(a) Is equal to 0
(b) Tends to
(c) Tends to
(d) Does not exit
21. x[x] is equal to
(a) 0 or 1
(b) 0 or -1
(c) 0
(d) none of these
22. is equal to
(a)
(b)
(c)
(d) none of these
23. dx =
(a) log 3
(b)
(c)
(d) none of these
24.If f(x) be any function which assumes only positive values and f(x) exists, then f’(x) is equal to
(a) )
(b)
(c)
(d) none of these
Q-25. is equal to
(a) 1
(b) n
(c) n-1
(d) none of these
Q-26. dx is equal to
(a)
(b)
(c)
(d) none of these
Q-27.
(a) 18
(b) 0
(c) -18
(d) none of these
Q-28. If the vectors and are at right angles, then a, b, c can have values
(a) a=2, b=3, c=-4
(b) a=4, b=4, c=5
(c) a=4, b=4, c=-5
(d) a=4, b=-4, c=-5
Q-29. and are the centers of the two circle whose radius are and The two circle touch each other internally if
(a)
(b)
(c)
(d)
Q-30. The length of perpendicular from the origin upload the line is
(a)
(b)
(c)
(d) none of these
Q-31. If cross product of two non-zero vectors is zero, then the vectors are
(a) Collinear
(b) Co-directional
(c) Co-initial
(d) Co-terminus
Q-32. The number of vectors of unit length perpendicular to vectors of unit length perpendicular to vectors and , is
(a) one
(b) three
(c) two
(d) infinite
Q-33. The line passing through (0,1) and perpendicular to the line x-2y+11=0 is
(a)
(b)
(c)
(d)
Q-34. The perpendicular distance of the origin from the line 3x+4y+1=0 is
(a)
(b)
(c)
(d)
Q-35. If is the angle between two unit vectors then is equal to
(a)
(b)
(c)
(d)
Q-36. If are three vectors, then is not equal to
(a)
(b)
(c)
(d) none of these
Q-37. The acute angle between the lines x-y=0 and y=0 is
(a)
(b)
(c)
(d)
Q-38. The vertices of a triangle are (0.3),(-3,0)and(3,0). The orthocenter of the triangle is
(a) (0,0)
(b) (0,3)
(c) (3,0)
(d) (-3,0)
Q-39. The equation represents
(a) pair of unites
(b) a pair of planes
(c) a spheres
(d)none of these
Q-40. The spheres
(a) Intersect in a plane
(b) Intersect in five points
(c) Do not intersect
(d) None of these
Q-41. If a line passes through (2,2) and is perpendicular to the line 3x+y=3, its y-intercept is
(a)
(b)
(c)
(d) none of these
Q-42. The lines and are at right angles if
(a)
(b)
(c)
(d)
Q-43. The distance of the point (x, y, z) from the x y – plane is
(a) x
(b) y
(c) z
(d) |z|
Q-44. The line
(a) Parallel
(b) Coincident
(c) Skew
(d) Perpendicular
Q-45. The G.M of the numbers is
(a)
(b)
(c)
(d)