The Other Nine: Synthetic Biology, Neandertal Genome and HIV Prophylaxis

Glide to success with Doorsteptutor material for IAS : Get detailed illustrated notes covering entire syllabus: point-by-point for high retention.

Download PDF of This Page (Size: 101K)

The Other Nine

Science’s list of the nine other ground-breaking achievements from 2010 follows.

  • Synthetic Biology: In a defining moment for biology and biotechnology, researchers built a synthetic genome and used it to transform the identity of a bacterium. The genome replaced the bacterium’s DNA so that it produced a new set of proteins—an achievement that prompted a Congressional hearing on synthetic biology. In the future, researchers envision synthetic genomes that are custom-built to generate biofuels, pharmaceuticals or other useful chemicals.

  • Neandertal Genome: Researchers sequenced the Neandertal genome from the bones of three female Neandertals who lived in Croatia sometime between 38,000 and 44,000 years ago. New methods of sequencing degraded fragments of DNA allowed scientists to make the first direct comparisons between the modern human genome and that of our Neandertal ancestors.

  • HIV Prophylaxis: Two HIV prevention trials of different, novel strategies reported unequivocal success: A vaginal gel that contains the anti-HIV drug tenofovir reduced HIV infections in women by 39 percent and an oral pre-exposure prophylaxis led to 43.8 fewer HIV infections in a group of men and transgender women who have sex with men.

  • Exome Sequencing/Rare Disease Genes: By sequencing just the exons of a genome, or the tiny portion that actually codes for proteins, researchers who study rare inherited diseases caused by a single, flawed gene were able to identify specific mutations underlying at least a dozen diseases.

  • Molecular Dynamics Simulations: Simulating the gyrations that proteins make as they fold has been a combinatorial nightmare. Now, researchers have harnessed the power of one of the world’s most powerful computers to track the motions of atoms in a small, folding protein for a length of time 100 times longer than any previous efforts.

  • Quantum Simulator: To describe what they see in the lab, physicists cook up theories based on equations. Those equations can be fiendishly hard to solve. This year, though, researchers found a short-cut by making quantum simulators—artificial crystals in which spots of laser light play the role of ions and atoms trapped in the light stand in for electrons. The devices provide quick answers to theoretical problems in condensed matter physics and they might eventually help solve mysteries such as superconductivity.

  • Next-Generation Genomics: Faster and cheaper sequencing technologies are enabling very large-scale studies of both ancient and modern DNA. The 1,000 Genomes Project, for example, has already identified much of the genome variation that makes us uniquely human—and other projects in the works are set to reveal much more of the genome’s function.

  • RNA Reprogramming: Reprogramming cells—turning back their developmental clocks to make them behave like unspecialized “stem cells” in an embryo—has become a standard lab technique for studying diseases and development.

  • This year, researchers found a way to do it using synthetic RNA. Compared with previous methods, the new technique is twice as fast, 100 times as efficient and potentially safer for therapeutic use.

  • The Return of the Rat: Mice rule the world of laboratory animals, but for many purposes’ researchers would rather use rats. Rats are easier to work with and anatomically more similar to human beings; their big drawback is that methods used to make “knockout mice”— animals tailored for research by having specific genes precisely disabled—don’t work for rats. A flurry of research this year, however, promises to bring “knockout rats” to labs in a big way.

Developed by: