Competitive Exams Botany Notes: Genetics: Basic concepts

Download PDF of This Page (Size: 124K)

Inheritance Patterns

Mendel was the first scientist to develop a method for predicting the outcome of inheritance patterns. He performed his work with pea plants, studying seven traits: Plant height, pod shape, pod color, seed shape, seed color, flower color, and flower location. Pea plants pollinate themselves. Therefore, over many generations, pea plants develop individuals that are homozygous for particular characteristics. These populations are known as pure lines.

In his work, Mendel took pure-line pea plants and cross-pollinated them with other pure-line pea plants. He called these plants the parent generation. When Mendel crossed pure-line tall plants with pure-line short plants, he discovered that all the plants resulting from this cross were tall. He called this generation the F1 generation (first filial generation). Next, Mendel crossed the offspring of the F1 generation tall plants among themselves to produce a new generation called the F2 generation (second filial generation). Among the plants in this generation, Mendel observed that three-fourths of the plants were tall and one-fourth of the plants were short.

Mendel's Laws of Genetics

Mendel conducted similar experiments with the other pea plant traits. Over many years, he formulated several principles that are known today as Mendel's laws of genetics. His laws include the following:

  1. Mendel's law of dominance: When an organism has two different alleles for a trait, one allele dominates.
  2. Mendel's law of segregation: During gamete formation by a diploid organism, the pair of alleles for a particular trait separate, or segregate, during the formation of gametes (as in meiosis).
  3. Mendel's law of independent assortment: The members of a gene pair separate from one another independent of the members of other gene pairs (These separations occur in the formation of gametes during meiosis.).