- Maxwell found an inconsistency in Ampere's law, and suggested the existence of an additional current, called displacement current, to remove this inconsistency. This displacement current is due to a time-varying electric field, and is given by

$$i_d = \varepsilon_0 \frac{d\phi_E}{dt}$$

Maxwell's equations:

First equation $\rightarrow \oint \vec{E} \cdot \vec{ds} = \frac{q}{\varepsilon_0}$ Second equation $\rightarrow \oint_{\vec{s}} \vec{B} \cdot \vec{ds} = 0$ Third equation $\rightarrow \oint_{C} \vec{E} \cdot \vec{dl} = -\frac{d\phi_B}{dt}$

Fourth equation $\rightarrow \oint \vec{B} \cdot \vec{dl} = \mu_0 i_c + \mu_0 \varepsilon_0 \frac{d\phi_E}{dt}$

The speed of electromagnetic waves is given by

$$C = \frac{1}{\sqrt{\mu_0 \varepsilon_0}},$$

Where,

 $\mu_0 \rightarrow Permeability of free space$

 $\epsilon_0 \rightarrow Permittivity of free space$

In material medium, the speed of light is given by

$$v = \frac{1}{\sqrt{\mu\varepsilon}}$$

Where, μ is the permeability of the medium and ϵ its permittivity

• The rate of transfer of electromagnetic energy per unit area is represented by a quantity called poynting vector \vec{S} . The direction of \vec{S} at any point gives the direction of energy transport at that point. Its SI unit is Wm⁻².

$$\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B}$$

• An electromagnetic wave carries linear momentum with it. If a portion of an electromagnetic wave has energy *U*, then the linear momentum carried by this

portion of the wave is $p = \frac{U}{c}$.

• Intensity of electromagnetic wave is

$$I = \frac{1}{2} \varepsilon_0 E_0^2 c$$

• Different electromagnetic waves:

-	Туре	Wavelength range
(a)	Radio waves	>0.1 m
(b)	Microwave	0.1 m to 1 mm
(c)	Infra-red	1 mm to 700 nm
(d)	Visible light	700 nm to 400 nm
(e)	Ultra-violet	400 nm to 1 nm
(f)	X-rays	1 nm to 10 ⁻³ nm
(g)	Gamma rays	<10 ⁻³ nm